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Objective: Tau neurofibrillary tangles (T) are the primary driver of downstream neurodegeneration (N) and subsequent
cognitive impairment in Alzheimer’s disease (AD). However, there is substantial variability in the T-N relationship –

manifested in higher or lower atrophy than expected for level of tau in a given brain region. The goal of this study was
to determine if region-based quantitation of this variability allows for identification of underlying modulatory factors,
including polypathology.
Methods: Cortical thickness (N) and 18F-Flortaucipir SUVR (T) were computed in 104 gray matter regions from a cohort
of cognitively-impaired, amyloid-positive (A+) individuals. Region-specific residuals from a robust linear fit between
SUVR and cortical thickness were computed as a surrogate for T-N mismatch. A summary T-N mismatch metric defined
using residuals were correlated with demographic and imaging-based modulatory factors, and to partition the cohort
into data-driven subgroups.
Results: The summary T-N mismatch metric correlated with underlying factors such as age and burden of white matter
hyperintensity lesions. Data-driven subgroups based on clustering of residuals appear to represent different biologi-
cally relevant phenotypes, with groups showing distinct spatial patterns of higher or lower atrophy than expected.
Interpretation: These data support the notion that a measure of deviation from a normative relationship between tau
burden and neurodegeneration across brain regions in individuals on the AD continuum captures variability due to mul-
tiple underlying factors, and can reveal phenotypes, which if validated, may help identify possible contributors to neu-
rodegeneration in addition to tau, which may ultimately be useful for cohort selection in clinical trials.
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In a shift towards a biological, rather than clinical, defini-
tion of Alzheimer’s Disease (AD), the National Institute

on Aging – Alzheimer’s Association (NIA-AA) recently
formalized a biomarker driven classification referred to as
the A/T/(N) framework.1 Following this system,

individuals receive dichotomous designations for the pres-
ence (+) or absence (�) of Beta-amyloid plaques (A), tau-
based neurofibrillary tangles (T), and neurodegeneration
(N). To be classified as AD, one must be both A+ and T
+ paralleling the pathological criteria for AD
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neuropathologic change (ADNC). Neurodegenerative
markers are meant to support biological staging of disease.

Neurofibrillary tangles (NFT) are more tightly linked
to downstream neurodegenerative change than amyloid
plaques.2–6 As such, the A/T/(N) framework posits that
neurodegeneration without NFTs (T-) is due to the pres-
ence of suspected non-AD pathophysiology (SNAP) regard-
less of the presence or absence of amyloid.7,8

While the dichotomous designation of these bio-
markers provides a simplicity in interpretation, it may blunt
the information provided about an individual’s underlying
disease status. In particular, T and N imaging biomarkers
provide continuous and spatially varying information that
are likely important for understanding phenotype. As NFTs
are the putative primary driver of neurodegeneration in
AD, T is expected to be tightly linked to N. Thus, discor-
dance between T and N suggests additional non-AD modu-
lators. While the extreme of T- and N+ supports SNAP,
even in a T+ individual, a relatively larger magnitude of N
than the magnitude of T also may support concomitant
SNAP. Further, the spatial pattern of this discordance may
support different underlying non-AD pathologies, given the
differential loci of greatest neurodegeneration with these con-
ditions.9 For example, greater anterior temporal atrophy than
expected for the amount of local NFT pathology may sug-
gest concomitant limbic-predominant age-associated TDP-
43 encephalopathy (LATE)10,11 which often co-occurs with
AD and primarily affects this region. Alternatively, less neu-
rodegeneration than expected for a given degree of T, may
suggest resilience to AD pathology, or brain reserve.12

Given that co-pathology with AD is common13 and
has implications for clinical interventions and prognosis,
and that definitive biomarkers for non-AD molecular
pathology are lacking,14 approaches that can operationalize
the presence of co-pathology are critical, as are measures
that capture resilience. The current study attempts to pro-
vide greater precision to the A/T/(N) framework by
treating T and N as continuous variables and then deter-
mining their relationship in a way that is “spatially aware”.
We first establish the normative relationships between T
and N at regions of interest (ROIs) across the cortical
mantle in people on the AD continuum (A+). Deviation
from this relationship at each ROI constitutes mismatch.
We predicted that a quantitative measure of this T-N mis-
match would be associated with factors that may reflect
non-AD neurodegeneration, such as the presence of cere-
brovascular disease or age, as well as with cognitive perfor-
mance. Further, we examined whether using data-driven
clustering based on spatial pattern of these T-N mismatch
metrics would produce distinct groups that would offer
insight into the presence of different concomitant patholo-
gies or brain reserve/resilience.

Materials and Methods
Participants
Data used in the preparation of this article were obtained from
the ADNI database. The current study included 137 A+ cogni-
tively impaired participants with diagnosis of MCI or dementia.
The number of datasets were based on data available for down-
load in January 2020. They included 80 MCI (age
76.1 � 7.5 years, 38 Female, 15.8 � 2.7 years of education,
MMSE score of 27.1 � 2.4), and 57 Dementia cases (age
77.7 � 9.5 years, 27 Female, 15.9 � 2.5 years of education,
MMSE score of 22.5 � 4.1).

Image Acquisition
ADNI MR imaging included a T1-weighted structural scan of
resolution 1.0 � 1.0� 1.2 mm3 and a FLAIR MRI acquired in
the same session with variable spatial resolution as prescribed in
the ADNI protocol. Tau PET imaging consisted of a continuous
30-min brain scan (six 5-min frames) started 75 min following
injection of approximately 10 mCi of 18F-Flortaucipir injection.
Most patients (N = 106) had an amyloid PET scan, with a
20 min brain scan (four 5-min frames) performed 50 min
after an approximately 10 mCi injection of the radiotracer
18F-Florbetapir. The rest of the participants received an
18F-Florbetaben Amyloid PET scan. After an injection of
approximately 8.1 mCi of 18F-Florbetaben and a 90 min uptake
phase, a 20 min brain scan (four 5-min frames) was performed.
The respective PET scans acquired closest in time to the struc-
tural MRI were analyzed. PET images were downloaded from
the ADNI data archive in the most fully pre-processed format
with the image description of “Coreg, Avg, Std Img and Vox
Siz, Uniform Resolution”.

Image Processing
The pre-processed PET images were aligned with the anatomical
MRI via rigid registration using the ANTs normalization software15

with a mutual information metric. The anatomical MRI was
parcellated into ROIs including cortical, subcortical and cerebellar
ROIs using a multi-atlas segmentation method.16 The parcellation
scheme is described elsewhere.17 Mean tracer uptake in cerebellar
gray matter and gray + white matter was used as reference to gener-
ate an SUVR map for the entire brain for 18F-Flortaucipir and 18F-
Florbetapir/18F-Florbetaben, respectively. A composite ROI con-
sisting of middle frontal, anterior cingulate, posterior cingulate, infe-
rior parietal, precuneus, supra marginal, middle temporal and
superior temporal cortex was used to compute a global SUVR
for Amyloid PET scans. Thresholds of SUVR ≥1.11 and 1.08 for
18F-Florbetapir and 18F-Florbetaben, respectively, were then used to
determine Amyloid-β status, as previously described.18 Composite
SUVR provided by ADNI are now available for all but one partici-
pant (variable SUMMARYSUVR_WHOLECEREBNORM) and
had a correlation of r = 0.97 with those used here. Amyloid-β status
was identical in all participants.

The T1-weighted structural MRI was processed using the
ANTs cortical thickness pipeline19 that implements a dif-
feomorphic registration-based thickness estimation method.20

ROI-based measures of tau (T) and neurodegeneration (N) were
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then computed as average 18F-Flortaucipir SUVR and cortical
thickness, respectively, within 104 bilateral ROIs (52 from each
hemisphere).

White matter hyperintensity (WMH) masks were com-
puted from FLAIR images using a previously validated deep
learning-based method that was the top performer in the WMH
segmentation challenge.21 The masks were visually examined by
a trained rater and edited as necessary before computing
volumes.

Modeling of Tau (T) – Neurodegeneration
(N) Relationship: A T-N Mismatch Metric
Tau-Neurodegeneration relationship was modeled using average
gray matter thickness (N) and 18F-Flortaucipir SUVR (T) for
104 bilateral ROIs in each subject. A robust linear regression22

was performed at each ROI. To mitigate effects of a skewed dis-
tribution of SUVR, the common logarithmic transform was
applied to T. Additionally, a bi-square weighting function which
can further minimize the influence of outliers was used for
robust regression. An example is shown in Fig. 1A.

For each individual, a summary measure, T-N mismatch
metric, was calculated by taking the difference between the num-
ber of ROIs that had residuals below 1.5 � standard deviation
from the regression line (indicating greater than expected N for
the given level of T load) and number of ROIs that had residuals

above 1.5 x standard deviation from the regression line (indicat-
ing less than expected N for the given level of T load). Thus, a
positive T-N mismatch metric suggests generally more atrophy
than expected for tau (ie, more vulnerable) while a negative T-N
mismatch metric suggests greater cortical thickness than expected
for tau burden (ie, resilience or brain reserve). The relationship
of this metric with demographic variables and cognitive perfor-
mance scores were analyzed.

Clustering for Phenotype Discovery
The regression residual for each ROI was discretized into a two-
element binary vector based on whether it was farther than 1.5 x
standard deviation away from the regression line and if the resid-
ual was negative or positive. These binary vectors were then
entered into Ward’s hierarchical agglomerative clustering
method23 to generate data-driven groupings of subjects. The
number of clusters (6) was specified empirically by the elbow
method proposed by Thorndike24 that uses the percentage of
variance explained as a function of number of clusters and opti-
mizes within-cluster similarity.

Results
Pearson correlation between the summary T-N mismatch
metric, defined as the difference in number of ROIs with
negative versus positive residuals of greater than 1.5 �

FIGURE 1: Scatter plots showing (A) Tau tracer SUVR vs. cortical thickness in the right inferior temporal gyrus ROI along with
robust regression fit and �1.5 standard deviation lines, (B) T-N mismatch metric vs. age, (C) T-N mismatch metric vs. MMSE
scores, and (D) T-N mismatch metric vs. logarithm of WMH volume in mm3.
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standard deviation, and age and WMH volume were cal-
culated (Table 1, Fig 1B, D). As expected, age (r = 0.38,
p < 10�5) and WMH volume (r = 0.35, p < 0.0001) were
strongly correlated with the mismatch metric, such that
older age and greater WMH volume were associated with
a higher T-N mismatch metric. In other words, these fac-
tors were associated with more atrophy than expected for
a given level of tau pathology within this study popula-
tion. Moreover, when the relationship between WMH
volume and T-N mismatch was covaried for age, the cor-
relation remained significant (r = 0.31, p < 0.001).

To determine whether the T-N mismatch metric
was associated with the degree of tau pathology, we exam-
ined correlations with 18F-Flortaucipir uptake in areas typ-
ically affected by AD: entorhinal cortex, inferior temporal
cortex, precuneus, and angular gyrus. We found no signif-
icant relationship of the T-N mismatch metric to tau
deposition in these regions, supporting the notion that
T-N mismatch is not a reflection of AD severity, as deter-
mined by tau PET.

We also examined the relationship of this summary
T-N mismatch metric with performance in various cogni-
tive tasks, with age, gender, years of education and IT tau
SUVR as covariates. The latter, an early region of tau
pathology, was used as a surrogate measure of tau load to
determine the degree to which mismatch influenced per-
formance beyond AD NFT pathology. Cognitive tasks
included a global measure (MMSE), measures of memory

(Logical Memory and AVLT delayed recall), language
(category fluency), visuomotor speed (Trailmaking Test A)
and executive function (Trailmaking Test B). These
results are summarized in Table 2. Significant correlations
were found with MMSE, AVLT, category fluency scores
and Trailmaking Test A while Trailmaking Test B was
borderline.

Correlational analyses between T-N mismatch met-
ric and demographic, imaging, and cognitive performance
measures reported above were repeated with an additional
covariate of composite amyloid PET SUVR. Amyloid

TABLE 1. Summary of Demographic and Imaging Variables Within Tertiles of T-N
Mismatch Metric and its Correlation

Variable
Lower tertile
(resilient)

Middle
tertile

Upper tertile
(vulnerable)

Pearson
r/chi-square p-value

Age (Years) 73.3 76.4 80.9 0.38 < 10�5

Gender (F/M) 26/20 24/22 15/30 5.53 0.06

ApoE4 status (0/1/2 allele) 12/14/12 10/18/8 16/18/5 4.88 0.29

MMSE 26.2 25.9 23.5 �0.30 0.0005

WMH volume (log mm3) 1.30 1.21 2.25 0.35 < 0.0001

ERC tau (18F-Flortaucipir SUVR) 1.35 1.34 1.31 0.03 0.69

IT tau (18F-Flortaucipir SUVR) 1.43 1.45 1.46 0.003 0.96

Precuneus tau (18F-Flortaucipir SUVR) 1.25 1.26 1.32 0.04 0.63

Angular gyrus tau (18F-Flortaucipir SUVR) 1.38 1.34 1.39 0.01 0.88

Mean (age, MMSE, WMH volume and regional tau burden) or categorical counts (gender and ApoE4 status) for participants trichotomized into
tertiles of T-N mismatch metric. Upper tertile has the highest relative atrophy than expected for tau (vulnerable). Rightmost columns show Pearson
correlation of age, MMSE and the imaging measures with the T-N mismatch metric is also shown. For the two categorical variables gender and ApoE4
status, the two results of chi-square test between the three tertiles are shown instead.

TABLE 2. Correlation of Cognitive Scores with T-N
Mismatch Metric with Age, Gender, Years of
Education and IT Tau Uptake as Covariates

Cognitive test Pearson r p-value

MMSE �0.30 0.0005

Logical Memory Test (Delayed Recall) �0.15 0.09

AVLT 5-min Delayed Recall �0.24 0.006

Category fluency �0.23 0.01

Trailmaking Test A 0.19 0.03

Trailmaking Test B 0.17 0.06
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SUVR was not a significant predictor for any of the
analyses.

Data Driven Clustering of Participants Based
on T-N Mismatch Metric
Participants were grouped into six clusters using hierarchi-
cal clustering. They appear to represent different imaging
phenotypes with distinct spatial topography, which may
be a proxy for underlying disease phenotypes, as summa-
rized in Table 3. Overall, the groups differed in age, bur-
den of white matter hyperintensity (WMH), clinical
status, and MMSE. However, they did not differ in tau
burden in key AD ROIs (eg, inferotemporal cortex,
precuneus, angular gyrus) based on 18F-Flortaucipir
uptake.

Group 1 was the largest group (n = 61) and had
atrophy and tau load measures closest to the regression
line. We labeled this group “canonical” since it defines

the expected relationship between neurodegeneration and
tau burden. Group 2 (n = 24) displayed greater atrophy
than expected for 18F-Flortaucipir uptake particularly in
anterior temporal/temporal limbic regions (Fig 2). The
group was slightly older than the canonical group with sig-
nificantly greater WMH burden (p = 0.01) and slightly
lower MMSE. A number of cases in Group 2 had particu-
larly severe anterior hippocampal/temporal polar atrophy
suggestive of temporal lobe pathology such as concomitant
TDP-4310,11 or hippocampal sclerosis,25 as described in
autopsy studies. Alternatively, Group 3 (n = 13) appeared
to be a resilient imaging phenotype with less atrophy rela-
tive to tau, particularly in lateral cortical regions (Fig 2).
While Group 3 was significantly younger than the canoni-
cal group (p = 0.01), this group did include older individ-
uals who appeared to have minimal atrophy despite
significant18F-Flortaucipir uptake as illustrated by the case
in Fig 2. This group also had higher mean MMSE scores

TABLE 3. Characteristics of groups defined by data-driven clustering of residuals from T-N. Bottom row
indicates variables that differ significantly between groups

Group (N) Description

Diagnosis
MCI/
Dementia Age

Gender
(F/M)

Log White
Matter
Hyper-intensity MMSE

IT Tau
SUVR

T-N
Mismatch
Metric
(median)

Group 1 (61) Canonical (low
residuals)

38/23 76.8 � 8.0 32/29 8.38 25.8 � 3.2 1.43 � 0.4 �2

Group 2 (24) High temporal/
limbic atrophy
(pattern suggestive
of TDP-43)

9/15 79.9 � 7.5 10/14 9.47a 24.2 � 3.7 1.46 � 0.4 10

Group 3 (13) Resilient (less
atrophy relative to
tau in lateral
cortical)

10/3 69.7 � 8.8a 9/4 8.02 27.0 � 3.4 1.46 � 0.4 �14

Group 4 (3) High temporal/
limbic and diffuse
atrophy (oldest
group; ? TDP
+ vascular + age-
related change)

1/2 87.2 � 6.1 0/3 7.88a 23.0 � 5.6 1.46 � 0.2 43

Group 5 (25) Resilient Temporal 18/7 75.1 � 6.8 11/14 7.70 25.1 � 4.4 1.46 � 0.3 �14

Group 6 (11) High diffuse
atrophy (lowest
cognition, high
WMH)

4/7 79.3 � 10.2 3/8 9.73a 22.6 � 6.0 1.45 � 0.5 27

Group Difference p < 0.05 p < 0.01 p = 0.15 p = 0.06 p < 0.05 p > 0.05 -

aindicates significant group difference compared with Group 1 (two-sided t-test).
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than the canonical group. Group 4 (n = 3) was quite
small and had severe, diffuse atrophy greater than expected
for tau in both limbic and cortical regions. This group was
marked by being the oldest (age range of 82–94). Group 5
(n = 25) displayed resilience, particularly in temporal and
frontal regions. This group was similar in age to the canoni-
cal group but had less WMH. However, Group 5 did not
have significant difference in MMSE from the canonical
group. Finally, Group 6 (n = 11) had widespread higher
atrophy relative to tau. This group was marginally older than
the canonical group, but displayed significantly higher
WMH volume (p = 0.01) and lower MMSE. Some individ-
uals within this group had quite severe WMH, as exempli-
fied by the case in Fig 2. The entirety of the T-N regression
residual data used for clustering is shown in Fig 3, along with a

summary of measure of percentage of participants that had a
suprathreshold residual for each ROI.

We also performed an analysis of longitudinal
changes in MMSE across the groups using linear mixed
effects model. Follow up period of cognitive data used was
between 1 and 4 years and a maximum of four time
points. Time*cluster interaction was entered as a predictor
and participants as random effect; covariates included age,
gender and years of education. Time*cluster interaction
was significant (p = 0.04) indicating the groups differed
in their rate of decline (Fig 4).

Sensitivity Analyses
We conducted the following sensitivity analyses to assess
the robustness of the proposed residual-based approach:

FIGURE 2: Median ROI-wise group residual maps (columns 1–3). More saturated color represents higher residual, indicating
higher (red) or lower (blue) atrophy relative to tau burden. Column 4 shows representative examples with arrows indicating
features characteristic of the group.
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(1) When T and N measures were averaged across left and
right hemispheres, the T-N mismatch metric had a corre-
lation of r = 0.99 with that using unilateral measures, and
clustering produced groups with similar characteristics,
with most subjects continuing to be clustered together.
This is pictorially shown in a tanglegram display in Fig 5
(top), (2) When non-discretized residuals were directly fed
into hierarchical clustering, again qualitatively similar
groups were obtained, as shown in the tanglegram display
in Fig 5(bottom), (3) When we weighted the contribution
of each ROI (# of suprathreshold residuals) with ROI size,

the resulting T-N mismatch metric was still highly corre-
lated (r = 0.97) with those without such weighting.

Discussion
Explicitly modeling the variability in the relationship
between tau burden and neurodegeneration can be a use-
ful tool for understanding phenotype and may provide
important clues to additional factors that modulate neu-
rodegeneration and cognitive decline. Determining such
factors, for example, the presence of co-pathology, is

FIGURE 3: T-N regression residuals for each ROI and each participant visualized on a heatmap. ROIs on the x-axis are sorted by
lobes, participants on the y-axis are sorted by clusters. Shades of red show positive residuals (more atrophy) and shades of blue
show negative residuals (more tau). Stacked bar graph in the top panel shows percentage of ROIs showing “mismatch”, as
defined by the residual being greater than 1.5 x standard deviation away from the regression line.

November 2021 757

Das et al: Tau-Atrophy Variability Reveals Phenotypic Heterogeneity



essential in both clinical research and practice to achieve a
precision-based approach to diagnosis, prognosis, and
management. While the dichotomous designation of bio-
markers in the A/T/(N) framework has proven to be a
powerful concept for AD classification, it fails to utilize
the continuous and spatially varying information that
in-vivo multimodal imaging can provide. Here we demon-
strate that a measure of deviation from a normative rela-
tionship between tau burden and neurodegeneration
across brain regions in individuals on the AD continuum
captures variability due to multiple underlying factors.

The basic conceptual principle motivating the
approach described here is that NFT pathology is tightly
linked to AD-related neurodegeneration, as has been dem-
onstrated in numerous in vivo and ex vivo studies.26–30 In
contrast, measures of beta-amyloid plaque pathology do
not strongly correlate with neurodegeneration.31 Thus, the
load of NFT pathology in the setting of AD (ie, presence
of amyloid and tau pathology as defined by the A/T/
(N) framework) should provide an estimation of the
degree to which brain structure would be expected to
be affected specifically by AD. Deviation from this expec-
tation would suggest that additional factors such as
co-pathology or brain reserve are modulating this relation-
ship. While this assumption may only approximate reality
and more complex relationships may be present, the basic
notion is likely to be correct and is consistent with the
findings of this study.

T-N Mismatch Metric Has Meaningful
Associations
As presented in Tables 1 and 2, a simple scalar measure
summarizing the degree of mismatch between the amount

of tau pathology and neurodegeneration across the whole
cerebrum is a useful metric to study underlying factors
that may contribute to the heterogeneity of AD. This sca-
lar measure used spatial information to account for the
extent of this mismatch across the brain (ie, the number
of ROIs), but is insensitive to the spatial pattern. None-
theless, we found that the T-N mismatch metric was sig-
nificantly correlated with two factors that are likely to be
drivers of atrophy beyond that of AD-related pathology;
age32 and cerebrovascular disease,33,34 as measured by
WMH burden.35 Moreover, the extent of this mismatch
was associated with the degree of cognitive impairment
across several domains, even after controlling for age
and18F-Flortaucipir uptake in the inferior temporal cortex,
a surrogate for NFT burden. As one would predict, more
atrophy than expected for a given level of tau was associ-
ated with poorer cognition while less atrophy was associ-
ated with better performance in the face of the same tau
burden. The fact that the T-N mismatch metric did not
correlate with 18F-Flortaucipir uptake in key AD-related
regions supports the notion that our measure of mismatch
is not confounded by disease severity in a non-linear rela-
tionship with structural neurodegeneration.

The current result supports a prior study by
Ossenkoppele et al.36 which used a global measure of T
and N, whole cortical 18F-Flortaucipir uptake and mean
cortical thickness, respectively, and a global cognitive mea-
sure, MMSE, to calculate a brain and cognitive reserve
metric. Consistent with our findings, Ossenkoppele et al.
reported that brain reserve was associated with age, such
that younger individuals had more brain reserve, and that
cognitive reserve was related to cortical thickness. Addi-
tionally, they found that female sex was associated with
higher brain reserve. We also found a trend towards sex
related to our continuous measure of mismatch. Thus, the
findings here provide convergence in an independent
dataset, but also demonstrate that these relationships occur
independent of overall tau burden. Further, the sensitivity
analyses using non-discretized residuals and bilaterally aver-
aged ROI measures points to the robustness of the general
approach of using T-N residuals.

T-N Mismatch Metric Can Potentially Reveal
Phenotypes
The scalar T-N mismatch metric captures the extent of, but
not the spatial pattern of mismatch. This pattern may pro-
vide additional insights, particularly related to the presence of
co-pathology in cases with more neurodegeneration than
expected for a level of tau pathology. To explore this, we
used a data-driven approach to cluster individuals based on
the spatial pattern of T-N mismatch. The clustering yielded
six groups with the largest, not surprisingly, demonstrating

FIGURE 4: Trajectory of cognitive decline for different
groups of participants. Slopes shown for each group is
estimated by linear mixed-effects model. Groups 2 and 6 are
the vulnerable groups showing steeper decline than group
1 (canonical). Groups 3 and 5 are the resilient groups. Group
4 is not shown because of the small group size. Note that
the variable maximum time periods for different groups
reflect differences in duration of followup data available.
[Color figure can be viewed at www.annalsofneurology.org]
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FIGURE 5: Tanglegram displays comparing cluster memberships. Top panel: comparison of memberships between using left and
right hemispheric ROI measures separately (left) vs. using averaged measures (right). Bottom panel: comparison using discretized
regression residuals (left) vs. the raw continuous regression residuals (right). In both panels, color for each cluster on the right
was chosen to be similar to the cluster on the left that had the most overlap in membership for ease of visualization. Cluster
labels (1-6) are arbitrary, as output by the clustering algorithm.
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little T-N mismatch that we referred to as a canonical group.
Three groups (2, 4, and 6) displayed greater neu-
rodegeneration than expected for the level of tau, but differed
in spatial patterns. One group (Group 2) had excessive atro-
phy in temporal-limbic structures, particularly anterior hip-
pocampus and temporal pole. While requiring pathologic
confirmation in future work, this group had a pattern of
atrophy suggestive of concomitant TDP-43 pathology consis-
tent with descriptions of limbic-predominant age-associated
TDP-43 encephalopathy,10,11 or TDP-43 Type C pathology
which is associated with semantic dementia.37 The two other
groups with higher levels of neurodegeneration had differing
degrees of severity, but were generally diffuse with one group
associated with high levels of WMHs. Post-hoc analysis of
longitudinal changes in MMSE also found a significantly
steeper rate of decline in these groups compared to the
canonical group, further supporting the notion that they rep-
resent vulnerable phenotypes.

We also expected to see evidence of resilience, and
found two different groups based on pattern of regions
that had greater cortical thickness than expected. These
groups may be explained by having higher brain reserve,
or relative resistance to the presence of NFT pathology,
perhaps through less neuropil or neuronal dropout.38 The
separation of these two groups may reflect different mech-
anisms of resilience that if studied on a larger scale could
provide important insights into environmental or genetic
factors that could contribute to reducing risk or slowing
disease progression.

This data-driven approach needs to be validated using
post-mortem pathological analysis, to determine if the imag-
ing phenotypes found indeed map on to disease phenotypes.
Nonetheless, it has implications for clinical interventions and
prognosis, particularly as a surrogate for neurodegenerative
pathologies for which no in-vivo biomarkers exist.39 On the
other hand, this approach can also help researchers identify
and study resilience or brain reserve as a phenotype. If vali-
dated with longitudinal cognitive data, this also may be a
valuable prognostic tool for clinicians.

Heterogeneity of underlying phenotypes is a significant
factor that reduces power in clinical trials.40 As an increasing
number of new therapies that specifically target pathological
tau species are tested,41 this approach may help exclude trial
participants that might have significant non-tau co-morbidity
(such as vascular disease or other proteinopathy) that might
be driving their neurodegeneration. This could potentially
reduce cost and provide a clearer understanding of the effi-
cacy of a potential therapy.

Limitations and Future Work
The approach presented here for utilizing the richer spa-
tial, continuously varying, information about T and N

biomarkers to study variability is necessarily limited by the
composition of the study cohort. The current composition
of the ADNI research cohort has relatively strict inclusion
criteria that limits the number of underlying factors that
can be examined, including a relatively restricted range of
disease severity. Future work will apply this framework to
more heterogeneous cohorts that encompass a more
diverse phenotypic landscape, including earlier onset
disease,42 non-amnestic presentations, and greater inclu-
sion of groups with comorbidities, such as vascular risk
factors such as diabetes.

Alternative approaches to defining a T-N mismatch
metric could also be considered. The use of ROI-based
regression residuals, as we have done, is easy to
operationalize and implement. One could use a similar
approach using voxel-level regressions instead. Another
way to estimate a mismatch would be to first build a
model of direct image-to-image (tau PET to MRI) transla-
tion using deep neural networks43,44 instead of using bio-
marker measurements from both modalities as we have
done here, and then use a metric of deviation from the
predicted model output as a mismatch measure.

Any data-driven clustering approach is exploratory in
nature, and the results will likely vary depending on
cohort composition and the underlying disease pheno-
types. Nonetheless, it is encouraging that the clusters that
emerged based on T-N residuals appear to differ from
each other based on underlying factors other than the pair
of imaging measurements used to derive them. These factors
included those likely related to vulnerability and resilience,
for example, a marker of vascular disease (white matter
hyperintensity) and age, respectively.

Finally, the relatively small cohort used here limits
strong conclusions about the stability of these groups, but
does provide a proof-of-principle that accounting for the
relationship of T and N provides phenotypic groupings
sensitive to biological modifiers of these relationships. In
addition to more heterogeneous populations, future stud-
ies will need to apply this approach to larger cohorts and
study longitudinal outcomes to determine the clinical sig-
nificance of mismatch. Ultimately, the study of cross-
modality relationships of different biological constructs,
including A, T, and N, may allow for quantitative assess-
ments linked to disease heterogeneity.45
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